

SYCHTA LABORATORIUM Sp. J.

Laboratorium Badań Palności Materiałów ul. Ofiar Stutthofu 90 72-010 Police

AB 1501

TEST REPORT

Order no: 3501748030 Signature: SL/Z-638/EN45545-R1/0680a/2023 Police, 16.08.2023

Test methods:

- 1. ISO 5658-2:2006. Reaction to fire tests Spread of flame Part 2: Lateral spread on building and transport products in vertical configuration.
- 2. EN-ISO 5659-2:2017. Plastic Smoke generation Part 2: Determination of optical density by a single chamber test.
- 3. ISO 5660-1:2015. Reaction to fire tests Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method).
- 4. EN 45545-2:2020. Railway applications Fire protection on railway vehicles Part 2: Requirements for fire behavior of materials and components.

Content of request: Tests according to EN 45545-2:2020 - requirement R1

(without T11.01 test).

Sponsor: 3M Poland Sp. z o.o.

Al. Katowicka 117, Kajetany 05-830 Nadarzyn, Poland

Poland

Material: 3MTM Double Coated Tape 99786 +

Composition: aluminium plate 1 mm thick + "3MTM Double Coated Tape 99786+"

+ aluminium plate 1 mm thick

Manufacturer/supplier: 3M Poland Sp. z o.o.

Al. Katowicka 117, Kajetany 05-830 Nadarzyn, Poland

Poland

Assessment: The tested product fulfils the requirement R1 according to

EN 45545-2:2020 for hazard level HL1, HL2 and HL3 (preliminary classification only, without T11.01 test).

The reprint and the copying: only with the agreement of 3M Poland Sp. z o.o.

Without the written consent of the Sychta Laboratory the report can be copied only in one piece.

Report applies only to the sample tested and is not necessarily indicative of the qualities of apparently identical or similar products.

Content of test report: five pages with signature and numbers.

VAT PL8513152392 KRS 0000387681 phone +48 914210214 mobile +48 502078855 biuro@sychta.eu www.sychta.eu

1. Spread of flame according to ISO 5658-2

Substrate: 1 mm aluminium plate on both sides.

Tested side: 1mm aluminium plate

Table 1.1. Findings of critical heat flux at extinguishment CFE

Name of measured quantity	Unit		Specimen	A	Standard	
		1	2	3	Average	deviation
Mass of the specimen	g	684,8	-	-	-	-
Specimen thickness	mm	2,2	-	-	-	-
Ignition time	s	-	-	-	-	-
Extinction time	s	-	-			-
Duration of the test	S	600	1-	- 1	-	-
Flame-spread distance	mm	0	-	- 11	-	-
Critical heat flux at extinguishment CFE	kW⋅m ⁻²	>50	-	- 111-	-	-
Flaming particles or droplets	YES/NO	NO			-	-

Table 1.2. Time of the movement of the flame front

Distance from	Calibration flux	Time of an	arrival of the flame front					
exposed of the	levels at the	Specimen						
specimen	specimen	1	2	3				
mm	kW⋅m ⁻²		S					
50	50,5	-	-					
100	48,5	1	-					
150	46,4	1	-					
200	41,4	1	-	-				
250	36,4	,	-					
300	30,2		-	-				
350	23,9	-	-					
400	18,2	-	-	- 1				
450	12,5	-	-					

Remarks: none.

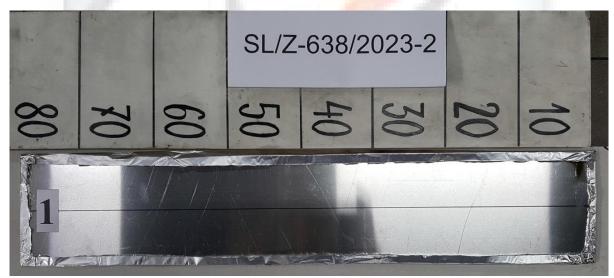


Figure 1. Appearance of the specimens after the test

2. Smoke generation according to EN-ISO 5659-2 + EN 45545-2

Test conditions - irradiance of $50 \text{ kW} \cdot \text{m}^{-2}$

Table 2. Final findings of smoke generation

Name of measured quantity	Unit	1	Specimen 2	3	Average	Standard deviation
Mass of specimen	g	30,8	-	-	-	-
Specimen thickness	mm	2,2	-	-	-	-
Ignition time - t _z	S	1	-	-	-	-
Extinction time	S	1	-	-	-	-
Duration of the test	S	600		-		-
Maximum of specific optical density - D _s max	-	3	-	-	-	-
Time of arrival of the maximum of D _s max	s	552	-	-	-	-
Specific optical density in the first 4 min of the test - Ds(4)	-	2	-	-	-	-
Cumulative specific optical densities in the first 4 min of the test - VOF ₄	min	3		-	-	-

Remarks: none.

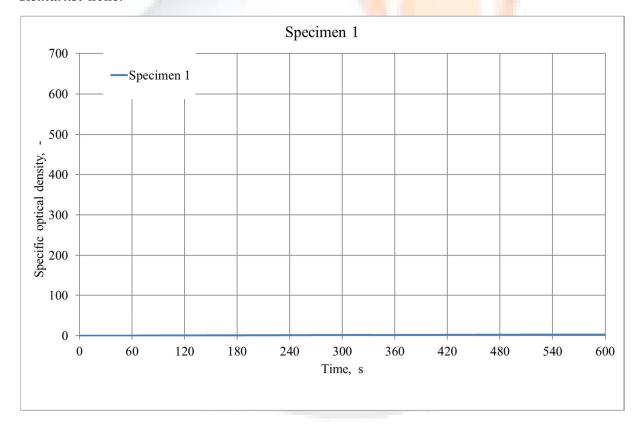


Figure 2. Specific optical density in the time

3. Heat release rate of specimen according to ISO 5660-1

Test conditions - irradiance of $50 \text{ kW} \cdot \text{m}^{-2}$

Table 3. Heat release rate

Name of measured quantity	Unit	5	<mark>peci</mark> mei	1	Average	Standard deviation	
Name of measured quantity	Ont	1	2	3	Average		
Mass of the specimen	g	55,1	-	1	_	-	
Specimen thickness	mm	2,2	-	1	_	-	
Ignition time	S	-	-	1	_	-	
Extinction time	S	-	-	1		-	
Duration of the test	S	1200	-	ļ	-	-	
Maximum heat release rate	kW⋅m ⁻²	2	-	-	-	-	
Total heat release	$MJ \cdot m^{-2}$	0,4	-	-	-	-	
Maximum average rate of heat emission MARHE	kW⋅m ⁻²	0,5		1	-	-	
Fire integrity acc. 5.2.2.2 EN 45545-2	YES/NO	YES	-	-	-	-	

Remarks: none.

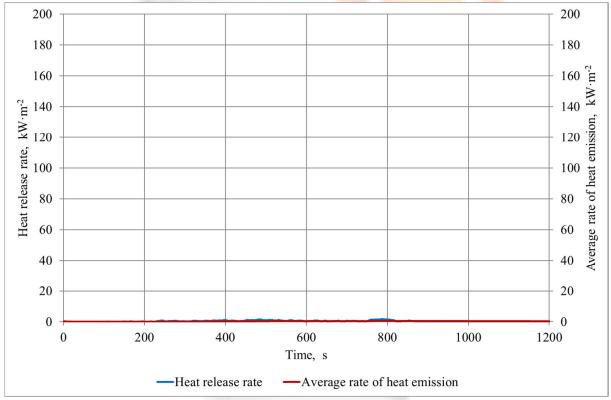


Figure 3.1. The relation of heat release rate and the time – specimen 1

4. Final findings

Requirement	Method/norm	Measured quantity	Unit	Measured value	Critical value		Crossing coefficient			
					HL1	HL2	HL3	HL1	HL2	HL3
R1 E 5 T E 5	T02 ISO 5658-2	CFE	kW⋅m ⁻²	>50	20	20	20	0,40	0,40	0,40
	T03.01 ISO 5660-1: 50 kW·m ⁻²	MARHE	kW⋅m ⁻²	0,5	-	90	60	-	0,01	0,01
	T10.01 EN ISO 5659-2: 50 kW·m ⁻²	D _s (4)	-	2	600	300	150	0,00	0,01	0,01
	T10.02 EN ISO 5659-2: 50 kW·m ⁻²	VOF4	min	3	1200	600	300	0,00	0,01	0,01
	T11.01 EN 17084 Method 1	CIT _G (4)	-	-	1,2	0,9	0,75	-	ı	-
	50 kW·m ⁻²	CIT _G (8)	-	-	1,2	0,9	0,75	-	-	-

The tested product fulfils the requirement R1 according to EN 45545-2:2020 for hazard level HL1, HL2 and HL3 (preliminary classification only, without T11.01 test).

5. Remaining required information

Date of receipt of samples: 02.08.2023

Sampling: sponsor took and delivered samples.

Description of the test material: Multilayer system consisted of aluminium plate 1 mm thick + "3MTM Double Coated Tape 99786+" + aluminium plate 1 mm thick. Total thickness of 2,2 mm and weight per unit area approx. 5,5 kg/m² (with substrate). 2 samples dimensions of 800x155 mm, 2 samples dimensions of 100x100 mm and 2 samples dimensions of 75x75 mm were delivered by the sponsor.

Conditioning of specimens: constant mass at a temperature of 23±2°C, and relative humidity of 50 ± 5 %.

Declarations:

- 1. The test results relate to the behaviour of the test specimens under the particular conditions of the test; they are not intended to be the sole criterion for assessing the potential fire hazard of the products in use.
- 2. The information provided on the first page of the report concerning the scope of research and identification of the tested object/objects were provided by the Sponsor.

Operators:

dr hab. Zygmunt Sychta

lic. Krzysztof Fidrysiak

Authorised by:

SYCHTA LABORATORIUM Sp. J. 72-010 Police, ul. Ofiar Stutthofu 90 tel./fax +48 91 4210 214, tel. 502078855 ndrzej Sychta a-mail: biuro@sychta.eu www:sychta.eu KRS 0000387681 REGON 321023120 NIP 8513152392

Date and place of test -

04.08 and 07.08.2023, Police